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TECHNICAL REPORT R-129

A THEORETICAL STUDY OF THE TORQUES
INDUCED BY A MAGNETIC FIELD ON ROTATING CYLINDERS AND
SPINNING THIN-WALL CONES, CONE FRUSTUMS,
AND GENERAL BODY OF REVOLUTION

By G. Louis SmitH

SUMMARY

The electromagnetic field equations are applied o
nonferromagnetic conducting slowly spinning thin-
and thick-wall open-ended cylinders and thin-wall
cone frustums, and also to thin-wall tumbling cyl-
tnders, to calculate the induced eddy currents from
which the resulting torques are det-rmined. A
method 1s also presented for determining the eddy
currents, and hence the lorque, in a series of cone
Srustums joined end to end. When applied to the
limiting case, this method leads to the solution for
the general body of revolution.

Figures that show the variation of torque with
Sineness ratio and thickness ratio are presented for
thin- and thick-wall cylinders. The torque acting
on a tumbling cylinder was found to be one-half the
torque acting on a symmetrically spinning cylinder,
all other factors being equal. Results from this
analysis are directly applicable to calculations of
the torque acting on spinning and tumbling satellites.

INTRODUCTION

One of the many considerations in dealing with
satellites 1s the Interaction of the earth’s magnetic
field with the econducting shell of a spinning satel-
lite.  (See refs. 1 to 4.) The geomagnetic field
induces eddy currents. within the rotating con-
ducting shell, which in turn interact with the field
to produce a torque. One component of this
torque slows the rotation, and another component
tends to precess the direction of the spin axis.
(See refl. 4.)

In studying this interaction analytically, it is

necessary 1o apply Maxwell’s electromagnetice field
equations with the appropriate boundary condi-
tions to the problem. The solution for a sphere,
which is applicable to spherical shells such as those
of the Vanguard series of satellites, has been pre-
sented 1n references 4 and 5. The purpose of
this paper is to present the solutions for some
other configurations. Two cylinder cases are
solved: the eylinder spinning about its center
line and the cylinder spinning about an axis per-
pendicular to the center line.  All rotations can
be resolved into these two components, The im-
portance of having both solutions available for
the general cylindrical satellite is that, although
it may be injected into orbit spinning about the
axis of minimum moment of inertia, internal dis-
sipation of kinetic energy causes the spin axis
eventually to shift to the axis of maximum mo-
ment of inertia.

Thin cones and {rustums of cones are also
investigated and equations are derived for the
induced currents within the shell, from which the
torque follows. A method is set up for extending
these resulls to a series of frustums joined together.
This method leads to a solution for a general body
ol revolution.

In cach case, equations are derived for the cur-
rent density throughout the body and for the total
resultant torque.

SYMBOLS
C curve of integration
c velocity of light
E clectrie field intensity vector
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E (with subseript) component of E

e, e, e unit vectors along g, 9, and ¢ axes

F vector force per ynit volume

H magnetic field intensity vector

h magnitude of H

i j k unit vectors along X, T, and Z axes
J eurrent density vector

J (with subscript) component of J

J.0) Bessel function of first kind, of order n

by B cigenvalues in thick-wall eylinder solu-
tion

L torque vector

{ Jength of eylinder-

P(x) function defined by equation (36)

r radias veelor

r radius (eylindrical coordinate)

i time

u (with subseript) unit veetor, in direction

indicated
w transformation variable, defined by

equation (71)

T,z distance along coordinate axes X, 7,
and Z

Y.0) Bessel Tunction of second kind, of
order n

Z.() eylinder function of order n, E,J,( )+
Fon V()

o, quantities defined by equation (40)

B quantities defined by equation (46)

] angle from X-axis in X,Y plane (ey-
lindrical and spherical coordinate)

A angle between Z-axis and H

o angle defined in figure 10 for tum-
bling-cylinder analysis

v polar angle in plane, used in cone
analysis

£t coordinate axes used in analysis of tum-
bling cylinder (see fig. 10)

p distance along cone [from vertex to

~ point (spherical coordinate)

o electrical conductivity

T thickness of thin wall

b harmonic function; for example, equa-
tion (13)

¢ cone hall-angle (fig. 11)

¥ stream function

@ spin veetor

w spin rate

Subscripts:

a, b quantily evaluated at end @ or end b

1 inside

0 outside

av average

AERONAUTICS AND SPACE ADMINISTRATION

GOVERNING EQUATIONS AND BOUNDARY
CONDITIONS

In order to formulate the problem mathemati-
cally, it is necessary first to list the equations and
the boundary conditions to be used. Maxwell’s
equations describe the magnetic and clectric fields
inside and outside the cylinder. (See refs. 4 and
6.) The analysis is restricted to nonferromagnetic
metals so that, in Gaussian units, the permittivity
and pernicability are near unity, Also, for spin
rates reasonable for most satellites, the magnetic
ficld due to the induced eddy currents is small com-
pared with the primary field; therefore, the unper-
turbed magnetic field can be used in the electric
field equations, This approximation is justified
in reference 4. Also, for spin rates of the magni-
tude applicable to satellites, the charge density
within a conductor will be negligible. Thus, as is
shown in reference 4, the electric field equations
are

oH

vsz’—C—'la— (1)

V.E=0 @)

In stationary axes, the eclectrie ficld can be
wrilten (ref. 4) as:

E=v®tc ' (wXr)<H 3

where v2¢=0, and &, the potential of the eleetric
ficld, is determined by the boundary conditions.
The term ¢ HwXr)XH is the mduced electric
field, The current follows immediately from

J=¢E 4)
The foree per unil volume is then
F=¢c"JXH 5)

and the torque is ealculated by integrating the dif-
ferential torque

dL=—1XdF (6)

The only boundary condition is that the compo-
nent of current (or clectrie field) normal to the
surface vanish at the surface. This condition,
together with the indueed field, is sufficient to
determine @ and v® completely.

Equation (3) is well suited for calculating the
clectrie field in symmetrically spinning cylinders,
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inasmuch as the boundary condition can be readily
applied in this case to determine ®; it will be used
in the study of both symmetrically spinning thin-
wall and thick-wall eylinders. However, in cal-
culating the electrie field in thin-wall tumbling
cylinders and spinning cones, equation (3) is not
so well suited, and it becomes convenient to use
a stream function to solve equations (1) and (2)
simultancously.

SYMMETRICALLY SPINNING CYLINDER

For the symmetrically spinning cylinder, an
approximate solution is first obtained for the
thin-wall shells, The solution for the thick-wall
cylinder is then derived, and a comparison is made
of the two solutions,

To study the case of a symmetrically spinning
open-ended cylinder, Cartesian and cylindrical
coordinate systems are first set up as shown in
figure 1. The Z-axis is set up along the center
line of the eylinder, and the Y-axis is defined in
such a way that H lies in the Y, Z plane and forms
an angle N with the Z-axis. The quantities H, r,
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Ficrre 1.—Coordinate systems for symmetrically spinning
cylinder.

and w can then be written as
H=#(isin A4k cos \)
=h(u,sin Acos—upsin Asin 84 u,cos\) (7)
r=u,r+u,z (8)
W= (9)
Equation (3) thus becomes

E=V®+4 ¢ 'hor(u, cos \—u, sin A cos §) (10)

The boundary conditions may then be written as
E, <r, o,i%):o (11)

Er(riy B’ Z):Er(ra: 0: :):O (12)

THIN-WALL CASE
For a thin-wall open-ended cylindrical shell,
the radial component of flow will be negligible by
comparison with the circumferential and longi-
tudinal components, Jy and J,, respectively, and
Je and J, will not vary significantly between
r=r, and r=r,. The problem therefore can be
considered to be primarvily dependent on ¢ and
z. Since the eylinder can then be cut along an
element and developed onto a plane, the problem
may be treated as two-dimensional, with 0 as
the abscissa and z as the ordinate, where 7 is
taken to be the “average” radius. Only a strip
of the plane one period in width need be considered.
A potential field Vé is now superimposed on the
field and adjusted to make the longitudinal com-
ponents of the total fiecld vanish at the boundaries
of the region corresponding to the open ends of
the eylinder.  The potential then is

&=>(A, sin nf+ B, cos nb)
=0
" Y . 1 MZ nz
(( . sinh 7-}—]7,, cosh l—) (13)
Equation (10) thus becomes
E=—u,c 'hwrsin A cosf-+u, Z(A,l sin n@

+ B, cosné) ((’ (Ob}] -+ D, sinh —)

—}—uo Z n(A, cos nf-- B, sin nf) ((7,, sinh '27:

T a=0

nz
+ D, cosh 7) (14)
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The radial components have been dropped in
equation (14) for this thin-wall case; thus, equa-
tions (12) are satisfied automatically. In order
to satisly the boundary condition (11), it is
necessary that the first term of equation (14)

cancel the first summation at z=:t-é—- This is

easily accomplished by letting all the coefficients
be zero except By and €. Then

0= —c¢~Yhwr sin X\ cos 0_*_3;@ cos 6 cosh Z_Zr

from which
-1 2 o7
¢ thortsin A
B\Ci=————

{
cosh 5

(15)

Substituting equation (15) into equation (13)
gives the potential as

. 2
sinh =
.

&0, 2)=c 'hor?sin X cos 8 (16)

cosh 5
The electrie field 1s then

z
cosh =
’

E@,z)=—u,c hwrsinicos 8| 1—
cosh -
2r

., 2
sinh =
—uge” Yhor sin Asin

(17

cosh 5

The cleetrice field having been determined, the
current follows immediately by equation (4). The
torque is then caleulated by

L—¢! f 3 (I X H)dV (18)
.

where V" is volumie. Equations (7), (8), and (17)
are substituted into the integrand of cquation (18).
The resulting vector expression in terms of u,,
and u, is then referred to the X7, Z system in
terms of 1, j, and k. The result is then integrated
over the surface of the cylinder. (Because of the
thin-wall approximations, the integration with
respect to r is replaced by simply multiplying by
the thickness 7.) The final result is

2

L=ncc %h%w sin N\~ (1— 7 tanh %)

(icosai—ksinA) (19

The factor 1—gr tanh 2%, which is the torque

[

per unit length normalized with respect to the
torque per unit length of a similar eylindrical shell
of infinite length, is plotted as a function of fine-
ness ratio in figure 2. Tt is scen from this figure
that the torque per unit length varies rapidly
with fineness ratio up to a ratio of approximately
5, after which the torque per unit length is a weak
function of fineness ratio. The torque, similarly
normalized, is shown in figure 3.

The conventional stream function ¢, describing

the current paths within the cylindrical shell, is
defined by

X —J=oF.
(20}
g‘k=—J@:—‘UEB

[«%

Dimensionally, this definition corresponds to a

Normalized torgue per unit length
: ™

/ ' i |
o] Lo 20 30 40 50 60 70 80 90
Fineness rotio, 1/27

Ficrre 2 —Normalized torque per unit length as a
function of fineness ratio for spinning thin-wall eylinder.
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Frarre 3.—Normalized torque as a function of fineness
ratio for spinning thin-wall eylinder.
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unit thickness. Then by equation (17)
cosh i
(8, 2)=—oc thwr? sin A sin 6 Ll————l 21

cosh 5y

The current paths, or streamlines, are given by
lines of constant ¢ and are shown in figures 4(a),
4(b), and 4(c) for fincness ratios of 2, 4, and §,
respectively.  The mapping for = £ <2r will be
identical to that shown for 0<6=<x. The values
of ¢ have been normalized by dividing by the
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Fiaure 4.— -Curreni paths for spinning thin-wall eylinder.
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(b) Fineness ratio —=4,
2r

Figurr 4.—Continued.

maximum value. The direction of the flow de-
pends, of course, on the relative direction of the
spin vector and the applied magnetic field vector
and thus is not indicated. Comparison of these
figures shows physically why the torque per unit
length varies as it does with fineness ratio. As
the fineness ratio is inereased, the current paths
become more nearly straight and parallel, except
near the ends; thus, in the limiting case of an
infinite cylinder, the streamlines are parallel.

In the preceding analysis the problem of the
torque and eddy currents produced by a conduct-
ing cylindrical shell spinning in a magnetic field
has been studied on the basis of thin-wall approxi-
mations. Exact solutions to the problem for a
thick-wall eylinder will now be derived because
of their intrinsic interest and also to substantiate
the thin-wall treatment and to find its limitations,

THICK-WALL CASE

In order to determine the electrie field within a
thick-wall eylinder, equations (10) to (12) are
again employed. The cylindrical harmonic may
be written as

@(7" 67 2):2 Z (“lmn Si]lll kmﬂ2+B7Illl
¢0sh kyp2) (Crn S N84 Diy €08 18) Z,, (KnuT)
437 (A, sin g+ B, cos n8) (Coz+-D,) (K"

- Frm+C log, v (22)
where

Zn (kmnr) :Emn']n (kmnr> + F"III”II (kmnr) (23)

g
°

R

2 S A 4L L
£ H

> +

O30 _— it S s S S b N

© i ——

§ =i —t TN

34 ! | T ——

o - SR S TV | s H

o 20 T ™

‘é I - 4 iy =T75) 50250
%’ (1K) T e i "A:,:——"V‘/ /
e e m A

s 1 )]
£ 0 2 4 6 8
€ Longitudinal distance from center, z, radii

(34

S

(¢) Fineness ratio 2—= 8.

Fi1GUre 4.---Concluded.
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and J,( ) and ¥7,( ) are Bessel functions of order
n of the first and second kinds, respectively.  For
simplicity, A will be taken to be #/2. From
physical considerations it is apparent that only
the component ol the magnetic ficld normal to
the spin axis is effective in generating a current ;
therefore, this restriction on » will be inconse-
quential. By using equations (10) and (22), the
components of the clectrie field vector within the
conductor can be writien as

=; ”Z (A, sinh k2
- B cosh by 2) (Cr 80 0f
+D,,, cos n®) 2. (k.7 —E«?(’A,‘ sin né
+ B, cos ) ((,z4+D,) (F,r*}
—Frint e o)
= S Gl sinh
+B,,, cosh k,,2)(C,, cos ub
— Do sin n8)nZ, (ko)
—[—;]; ; (A, cos nf— B, sin nd) (C,z
4-D)(E "+ Fr—"n  (25)
E, =g¥{:——c‘1hwr cos f

=Z 2 kmn (‘Aimn COSh kmng
m ”

-+ B, sinh £,,,2) (Cy sin 8
_§—Dﬁlﬂ ('OS 7?0) Z?L (kmnr)

+>- (A, sin ng+ B, cosnd) (K"
+Fr~—c ther cos §  (26)

The boundary conditions are now applied to the
problem. First the requirement of equation (11)
that the longitudinal component of the electrie
field vanish at the ends is applied to equation (26).
By symmetry 5,,=0. Also, only the cos 6 terms
can have nontrivial coefficients, that is, Dy,=
B,=0 (n#1) and Cpp=21,=0. Next, the re-

quirement of equation (12) that the radial com-
ponent of the eleetric field vanish at the inside
and outside surlfaces is applied to equation (24).
This eondition gives (7,=0, I£,=F,=0, and

Zoalkmats) =7, (kmnT) =0 27)

Equations (27) yield the characteristic equation
which determines the eigenvalues k,, and also

%’"J- The method of evaluating them will he
discussed presently. By letting D,,—=1 and

dropping the n subseript, equations (22), (24),
(25), and (26) arc reduced to

&, 0,z2)= i A, sinh &,z cos 07, (k.r) (28)
m=1
F, =32 A, sinh k.= cos 6Z,(kn)  (29)
m=1

Fo=— i A, sinh &,z sin 67, (k,.7) (30)

m=1

K= i Ak, cosh b,z cos 07, (k) —c hor cos §
m=1
(31)

In order to evaluate £, and F"”’,
is expanded by means of equation (23) and then
/ . 1 -
Zi(knr) 1s replaced by &,Z,(kr) — Zi(k.). The

following two equations are thus obtuined:

equation (27)

E, [AJ (o) —;‘; J, (k,"/',-)]

F [k,,J’o (o) —j—i e <fk,,,m-)]:0 (32)
B | b ) = Ttk |

[ BT ) = - V) [0 (3)

@
K,
gives the characteristic equation for the k, values:

Eliminating between equations (32) and (33)

kau (kmro) _rl Jl (Il‘m"'o) km']o (kmri) '—7_3; Jl (krrzri)

kln)vu (kmru) '—'% Ivl (kmru) kmy’u (kmri) _7_,1; },1 (kmri)

(34)
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One method of solving equation (34) is to re-
wrile it as
kmera (kmro) _Jl (kmra) _kmri']u (kmri) s Jl (kmri)
kmroI70 (kmro) _ITI (kmro) —kmriI’o (kmri) _171 (kmri)
(35)

Now define P(x) by

_1d,(0)—Ji (@)

P(I) —m (36)

Thus, the characteristic equation may be written
as
p(krnri>:])(knzro) (37)

A plot of the variation of P(x) with r which is
applicable for all cases can be made. To deter-
mine the cigenvalues for a cylinder with a given

ri/ro,P<:—i r) is plotted as a function of z. The
[

intersections of P(? 1) with P(x) satisfy equa-
tion (37) and therefore give the desired cigenvalues

Such a plot is shown in figure 5. The

&
fn=r
[

solid line is for PP(x) and the dashed line is

for P(0.5z) or %:0.5. In this example, the first

three eigenvalues given by the intersections are
seen to be k,=1.42, 6.53, and 12.65, where r, is
assumed to be unity. The variations of the first
few eigenvalues with 7/r, are shown in figure 6.

After the cigenvalues have been determined,
F, /I, is given immediately by

Fu

Em= - P(kmra) (38)

30

20

1.0 —
Py olT —
N .
-1.0 \
\ :
-20 ;
! |
30, e 14

Fratvre 5.— Plot for graphical determination of eigenvalues,
644936 —62——2

G- - . . _ . e

Eigenvolues

[e}]
|
.

T——— | ] - -
4 —— .| i
| e ] L . -
]
0 2 4 6 B8 1.0
/%

Fraure 6.—Variation of cigenvalues with r,/r,.

The wvariation of the first few values of F,/FE,
with r;/r, is shown in figure 7. The singular
points occur where 7, becomes zero while F,
remains finite.

The A,, values are determined by again apply-
ing equation (11) to equation (31) and using the
orthogonality propertics of Bessel functions:

41— C_lhwr(,am (39)

k., cosh —’2"—

where, by reference 7,
f * 17, (k)
alﬂz r;
Y f My (o)
Ty r2

]LT‘ Z‘.’.(kmr)';?

= = (40)

2
ro % ([Zulkat) = Zolenr) Zu (ki) ) [

r
ifs

The @, values are thus nondimensional and are
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-20
o]
i/ 7o

Frevre 7.—Variation of F,/FE, with »r/r, for different
eigenvalues.

funetions only of r/r, for a given m. Tt is noted
that 77, and F,, need not be separately determined;
only their ratio F,/F,, need be found.  Substitut-
ing equation (39) into equations (28) to (31) gives

kd sinh &,z
&(r,0,z)=c hwr,cos Z m 220 k’”[

m= "t
" cosh —=-
2

Zy(kar) (41)

Ey=chery cos 02 Z_ I_rlhjltij Zi(kar) (42)

" cosh =

= a, sinh k,z

Ez—c“hw sin@ >

Zi(kur) (43)

=1 K o héd
cosh =7
F.=—c¢har, cos 8| Z— i o C—Oihi 771(]%7‘)
To o m=l " ol =
2
(44)

The electrie field is therefore determined within
the eylinder. The convergenee of these summa-
tions is generally good.

AERONAUTICS AND SPACE ADMINISTRATION

The procedure for determining the torque is
essentially the same as outlined before for the
thin-wall cylindrical shell. The result is

N
L—noc-2h2 sin )\wll'f{i l:l—(%)]

©

Z tnnh (k' L,)} (i cosAx—k sin A)
k"’ 2 7, (45)

where I/2r, is the fineness ratio, k,, is the eigen-
value nondimensionalized with respect to 7,, that
is, k,, =7k, and B, is defined by

o o an | 7
sa=22 [ rzanar=25| - 2,
T 7 Ty m

o

m!

(46)

Note that again, for large values of the fineness
ratio 1/2r,, the torque per unit length is inde-
pendent of the fineness ratio.

The torque per unit length per unit thickness
as a function of r/r, is shown in figure 8 for
various fineness ratios.  (The product gc™%h%wr,! is
tuken to be unity.) Figure 9 is a eross plot
showing the torque per unit length per unit
thickness as a function of fineness ratio for various

i

r .. .
ri/r, values. The T—=1.0 curve is identical to

that for the thin-wall solution shown in figure 2.

1.0 ﬁjﬁ
Fineness ratio, !
- e T2
8 B
2 i |
3 6 mm //// ; J
g I - >
] | 1 X
PR |
& -
.2k e =
|
i
0.6 7 .8 9 TO
r,/ra

I'tcore 8.—Torque per unit length per unit thickness as
a function of r/r, for spinning thick-wall cylinder.
The produet ec—2h%wr,t is taken to be unity.
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Fineness ratio, 1/27,

FiarrE 9.—Torque per unit length per unit thickness as
a function of fineness ratio for spinning thick-wall
cylinder. The product se—2h2wr# is taken to be unity.

THIN-WALL TUMBLING CYLINDER

The coordinate systems used in the analysis of
the tumbling eylinder are shown in figure 10.
The £, », ¢ coordinate system, with the unil
veclors e, @, and ey, is space fixed at the center
of the rotating cylinder, with the g-axis parallel
to the spin axis and the g-axis oriented so that
the magnetic field vector lies in the g, ¢ plane.
The X, Y, Z systemy with unit vectors i, j, and k is
fixed in the eylinder with the origin at the center
of the eylinder, the X-axis being alined with the
£-axis, and is rotated from the space-fixed system
by the angle . Tn addition, a polar coordinate
system 7,8,z with unit veetors u,, w, and n, is
fixed in the cylinder,  being measured from the
N-axis, as in figure 1.

Now, because only the normal component of
VT is effective in a thin-wall conductor and
radial currents are negligible, equations (1) and
{4) give for this case
oJ. 0Js

_ods . .
Y. ¢ hw sin A cos u sin 8

47)
The continuity requirement (eq. (2)) reduces to

3y o,

VJ—-]—ag-l-x—O (48)

¢

k 5

Fraere 10, Coordinate systems for tumbling evlinder.

Radial current having been neglected, the bound-

ary condition is simply
{

This problem could be solved by a scalar potential

as before. However, 1o demonstrate an alternate

approach, the solution will be by means of a

stream fTunction. With a stream function ¢ de-
fined as before (see eq. (20))

Viy=—(vxJ), (50)
so that, by equation (47),

2 2,
V'*’l/x:r?—a";ﬁ—%;:ac“hw sin Acos usin § (51)

Solving equation (51) yiclds
Y=0c " ther? sin A cos y sin §
+iﬂ (A, sinnf+ B cos 1)
e
((’,, sinly 'n‘TZ-|-D,, cosh 71;) (52)

Only the sin @ component ol the harmonic part
of ¥ will not vanish when the boundary condition
is applied; therefore, A,=0 (n>1) and B,=0.
By symmetry (,=0. The current density 1s
then caleulated by equations (50) and (52),
under the condition that the longitudinal com-
ponent vanish at the ends (eq. (49)), and A, D, is
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thereby determined. Thus the stream function
and current components are shown {o be

cosh=
Y8, 2)=0c™ "hw® sin X cos p -

cosh 3

sinf (53)

sinh 75
7 sin 6 (54)
cosh oy

Jo=0oc"hwr?sin A cos p

J.=oc thor?sin A cos u| 1— cosf (55)

The torque resulting from this current is

L=—noc™%h% sin N3l (1—gf tanh i)
l 2r

cos u{—isin A cos u+k cosA) (56)

Expressed in space-fixed axes,

L=moc™2h%wsin N3lr (1—& tanh ‘l>
{ 2r

(—e, sin A cos® u—e, cos A sin p cos p

+e; cos A cos? u)

(57)

Averaging this torque around one revolution
gives simply

T . . 2r !
Lav=§ acv 2h%e sin A3 s (I—T tanh 5)

(—e, sin Ate; cos N)  (58)

Comparison of equation (58) for a tumbling
cylinder with equation (19) for a symmetrically
spinning cylinder shows the two expressions to be
identical exeept for a factor of 1/2 in the case of
the tumbling cylinder beeause of the sinusoidal
variation of the current. Also, it is scen from
equations (21) and (53) that the streamlines are
identical.

THIN-WALLED CONES AND CONIC FRUSTUMS

Tn studying the magnetie torques on thin-walled
symmetrically spinning cones and cone frustums,
coordinale systems are set up as shown in figure
11. Cartesian and polar coordinates are oriented

Ficurg 11.—Coordinate systems for cone.

as before, the Z-axis being parallel to w, the X, Z
plane containing H, 6 being measured in the
X, Y plune from the X-axis, and » being measured
normal to the Z-axis. The origin is placed at the
vertex of the cone.  The cone half-angle is ¢, Tn
addition, p is defined as the distance from the
vertex to a point on the cone, and unit vectors
u, and u, arc defined normal to p and w and
parallel to p, respectively.

As before, only the component of V< J normal
to the surface is considered. Tquation (1) gives

(VXDg=—0oc thwsin Ncosgsing  (59)

which 1s the governing equation for a conical
surface.

As with the eylinder, the cone or cone frustum
is a developable surface and can be rolled outl on
a plane; therefore, the problem becomes a bound-
ary-value problem in a scctor of an annulus or
of a cirele in a plane. The polar coordinates in
the plane are the radial distance p and the central
angle », which is related to the angle 6 by the
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equation
y=0sin ¢ (60)

(This equation is readily verified by noting that
a circumferential distance (p sin ¢)8 on the cone
becomes pr in the plane.)

In polar coordinates, the TLaplacian of the
stream function is given by

_o¥
=3

o
+ +,§257

VY=
so that equation (39) now becomes, with the aid
of equation (60),

g‘é paat = q}n 5 %Zé_gc"’hw sin A cos ¢ sin 6

(61)

As in the case of symmetrically spinning eylinders,
only the sin 6 term of ¢ remains after the boundary
conditions have been applied.

Accordingly, the solution of equation (61) is
assumed 1o be of the form

¥(p, 6) =sin 8f(p) (62)

Substituting this expression into equation (61) and
rewriting gives

&Ef L df
'S dp;f-p

—csc? ¢f =oe” The sin A cos ¢p?  (63)
The result is seen to be an equidimensional
cquation.  Substituting the solution for f(p) into
equation (62) gives

¢ Thw sin A (’Ob ¢ sin 8
’l/(P, 0)_" 4 CS(‘ ¢

( 2—1—41 pcsc ¢
+Bpme ey (64)

where .1 and B are to be determined.
The two components of current density are

W .. . o¢ thwsin A cos ¢ sin §

E)_Jo(p) 6)'_ 4_(,SC2 ¢
(2p+1 ese pp™ ¢71— B ¢sc ppT ¢ ¢ (65)
1 o

T psing 00 =Jlp, )

o¢”hw sin A col ¢ cos ¢
4—csclo

(ptcdpesc e - Bp=csc#=h)  (66)

In applying these equations to a cone, the

boundary conditions are that J,=0 at the end
p=p, and that the current density remains finite
throughout the cone. By the latter condition
B=0, and the former gives

pa_*_‘:lpacsc #=1==(
A= p2moe e (67)

or

For a cone frustum, it is required that J,=0 at

both ends, p=p, and p=p,. Thus
Pa lp cse ¢— I_LBp —c8c g—1 _ =0 (68&)
po-t Ay 8714 Bp,ere 91=0 (68b)

Simultancous solution of these two equations
gives

Q= pa—csc ¢_Ipb— pnpb—cs(‘ ¢? (693\)
pacsc ¢—lph—csc ¢—l_pa—csc g‘;—]pb(‘sc ¢p—1
przpbcsc¢_I—Pucsc ¢_Iph N
B= csc -1 —escgp—1__ . —cicgp—1, escp—1 (ng)
Pa Py Pa Py

Substitution of the current expressions (eqs. (65)
and (66)) into equation (18) gives the torque:

pose ¢+2

LT *h*w sin A cos’ ¢ sin ¢7 <
B 4 cse ¢+2

4—cscl ¢

—csc g+2
e o5)| (—icosxiksind) (70)

Tt is scen that the solution in the form given
here contains a singularity for csc ¢=4+2 or
¢=-430° This is due to the homogencous part
of the solution becoming identical with the in-
homogencous part. The solution for this case
may be obtained by introducing a transforma-
tion variable w defined by

p=e"
(71)

w=log, p

whence

df _df

dp dw

zf’ f &4
T dw? dw
With these cxpressions, equation (63) gives, for
o= +30°,

<. f—-lf— o™ hwsin A X2 3 2w
du? 2
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The solution of this equation is

j:‘—s3 ¢ the sin Nwe?? 4 Ade? 4 Be ")
—
=% ¢ Thw sin N(p* log, p+Ap*+Bp™?)  (72)

The stream function is thus given by

yb(p,ﬁ)—— crc“hw sin X sin 8(p? log, p+A 0>+ Bp™?)
(73)

and the current density components are

—

Jo(p, 0) =‘g oe” ke sin A sin g{p(1+log, p)
+2Ap—2Bp73] (74)

I
J.(p, 0)?:_% oc™Vhe sin A cos 6(p log, p

+Ap+Bp™)  (75)

As before, these equations are applied to a cone,
and the constants are found to be

A=—log, p,
B=0
Tikewise, for a frustum, the constants are

1 Pu 10g¢ pb pa 10 e Pa
Pq “Pb

B Pa pb (lﬂgn Pa loge Po)
' —po*

The resultant torque is then

L=I% wac 2hlw sin )\r[ (lob( p— 5)—*— Ap?
- BP—ZJ (cos a—ksinN) (76)

SERIES OF CONE FRUSTUMS

Tf a series of m conic frustums are joined end
to end, as in figure 12, equations (64), (65), and
(66) apply in each section, and it remains only to
determine the A and B for ecach seetion in order
to define fully the current and hence the torque.
At the joint, the radial component of current
must be continuous, and the circumflerential
component must also be continuous as otherwise

¢,
$2

|
SR

Popr P
20’ T30 Pnb’nH,a v

Fiorre 12.—8cries of cone frustums.

a vortex line would be formed, with resulting
infinite curl of current along the joint. Therefore,
the conditions for determining the constants are
that the respective components of current are
continuous al the joints, and that at an open end
the radial component vanishes, or that, if the
end is closed by a cone, the current remains
finite. With the notation for the ends of each
section as shown in figure (12), these conditions
can be wrilten for the junctions as

Jﬁ(plxb9e) :J
Jﬂ(pnb;e)

(774)
(77b)

s (pn-i-l,u)e)
JB(Pn«H 076)

By using equations (65) and (66), equations (77)
become

fllz(lnb_'l_Igrlbnh+c::b:"1nfla‘n—rl.a-%Bn-}-lbn+l,a+cn+l.lz
(78a)
‘A'lnanb Bubnh+fnb - n+lan+1 a n+1bn+l,:l+,fn+l.a
(78b)
where
0 Pt COt S, (792)
na 4—cscio, )
; —€BC 1 cot .
bnu:pm 4 P) 4)" (lgb)
—C8C d’n
cot -
Cou= u (79¢)
4—cselop,
.2 cm -
f"”—— pll(.l ¢" (‘Agd)
T g —csct g,

and a,, by, Cus, and [, are similarly defined. The
two parts of equation (78) give, by addition and
subiraction,

Cpb_;_fnb: 1
—2 s

: n+1an+x,a+

Q:H.a‘{‘fnﬂ,a
2

Ilua’nb+ (80&)
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Bt T B by 4 e e (501
In the application of these equations, it is im-
portant to note that, in proceeding from one end
of the frustum series to the other, if the opening
angle of a cone with radius increasing with the
distance along the body is considered positive,
the opening angle of a cone with radius decreasing
as z Increases must be negative, and viece versa.
This sign convention is intrinsically assumed by
the equations.

Equations (80) furnish 2m—2 of the equations
necessary for the determination of the 2m con-
stants. In order to set up the remaining iwo
equations, it is necessary to consider the following
three cases, each of which must be treated
separately:

(1) Both ends closed: Tn this case, finiteness
requires that
(81a)

(81b)

Equation (81a) provides an initial valuc from
which successive /3, values can be calculated by
the recurrence cquation (80b). Likewise the A1,
values can be determined by equations (80a) and
(81Db).

(2) One end open and one end closed: At the
closed end, finiteness requires that

B1:0

and, at the open end, the requirement that the
longitudinal current vanish gives equation (68b)
applied to the mth segment. Thus, the B, values
can again be calculated by recurrence, after which
equation (68b) gives A,, and the A, values can
then be determined similarly.

(3) Both ends open: The boundary conditions
for this case are that the radial component of the
current vanish at each end, so that equations (68a)
and (68h) arc applied to the first and last segments,
respectively.  Next A, and B,, are expressed by
linear relations in A, and By, respectively, obtained
by successive use of cquations (80a) and (80b).
Equations (68a) and (68b) now beconie a pair of
simultancous equations in A, and By, so that these
two can be found. The others then follow.

The constants in the current equations having
been determined, the flow is completely defined
and the torque follows by summing the contribu-

tions of all the sections, cach being determined by
equation (70).

GENERAL THIN-WALL BODY OF REVOLUTION

The next step is to apply the theory developed
for series of frustums to the case of a continuous
body of revolution (fig. 13) having as generatrix
an arbitrary curve, say r=r(z), which has a piece-
wise continuous first derivative dr/dz. Initially,
however, it will be assumed that dr/dz is continuous
throughout the length of the body.

The body is considered as made up of a large
number of [rustums joined; therefore, equations
(80) apply. Equation (80a) is now rewritten in
the following form (for a reason that will be im-
mediately apparent):

‘4n+lafn+1,a——[1nanb

Z% [(cnb_cn+1.n)+(flzb__fn+1,a)] (82)

If the body is considered to be continuously
curved,
dAa,

"1n+l:“1n+ d

Asn

da,
a‘n+],a:(lub+ .(F Azn

With these expressions, equation (82) becomes, in
the limit,
1 .

dla(2)A(2)]=—35 [de(2) +df (2)] (83)
The subscripts are no longer needed, as 4, a, ¢,
and f are continuous functions of z. Equation
(83) may be integrated directly to give
a2 49 =—HE L a0) A0)

0 0

Fravre 13.—Geometry of general body of revolution.
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or

A(z)=a"'(2) l:a(O)A(O)+C—<w

O]

C(O)Tf(o)

H);ﬁz‘)] (s6)

The quantities a, b, ¢, and f are defined by equa-
tions (79) as functions of p and ¢. These are de-
fined in terms of r(z) by the geometry of the prob-
lem, as shown in figure (13), as

="y fie(y? +(“” (87)

o fdr
qS—t:ln l(ﬁ;) (88)

Other needed relations that follow from figure 13

are
-2
cse? =1 +(d’ )

dr\!
cot ¢—<E)

The constants A(0) and B(0) are determined in
the same manner as that outlined for the joined
frustums, in order to satisly the condition that
no current flows out the ends. The functions
£ (z) and B(z) thus evaluated are substituted into
equations (64), (65), and (66) to obtain the
stream function and currenl components. The
torque then follows as

Similarly,

B(z)=b-1(2) [b<o>B<0>+

L=wac™2h? kf DSO_S_(bM{ 3+‘4(2)pcsc¢+1

—cscl o
+B(z)p~c=c#*]dp  (89)

In general, this integral would have to be evaluated
numnierically. Any discontinuities in the slope
arc accounted for merely by treating the discon-
tinuity as a juncture in a series of [rustums,

NUMERICAL EXAMPLE

As an example of the application of the formulas
of this paper, the magnetic torque acting on an
aluminum eylinder such as the heat shield of the

micrometeoroid satellite S-55 in a symmetrical
spin is calculated. For the calculations, the
following numbers are used:

h=0.30 gauss
w=21.0 radians/sec

{=96 cm
7=24 em
7=0.05 cm

¢=3X10" em/sec

¢=0.312<10° (ohm-cm)™?

A=90°

. . 2r l -

Thefinenessratiois 2,for which 1 -7 tanh 9—r=0.:)2.
Tt is necessary {o express ¢ in Gaussian units,
that is, in (statohms-em)~!. The torque is then
caleulated by equation (19) as:

(0.3)2X21.0
95107
X 243 96 0.05 < 0.52

L=—krx2.81 X10""X

=—64.0k dyne-cm

RESUME

A theoretical analysis has been made of the
eddy currents induced by an applied magnetic
ficld on the following spinning shapes:

(1) Thin-wall symmetrically spinning cylinder,

(2) Thick-wall symmetrically spinning cylinder,

(3) Thin-wall tumbling cylinder,

(4) Thin-wall cone and cone frustum,

(5) Joined thin-wall cone frustums, and

(6) General thin-wall body of revolution,

From the current cxpressions, the torques are
calculated. The first two cases were solved by
applying boundary conditions to the sealar potential
of the electric ficld. The other cases were solved
by means of a stream function.

Figures that show the variation of torque with
fineness ratio and thickness ratio are presented
for thin- and thick-wall cylinders, From these,
the degree of approximation in the thin-wall
treatiment can be ascertained. Tt was found that
the average torque acting on a tumbling eylinder
is one-hall the torque acting on a symmetrically
spinning cylinder, all other factors being cqual.

I.AxGLEY RESEARCH CENTER,
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION,
LaxcrLeY StaTiown, IIamprox, Va., October 12, 1961,
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